Indian Statistical Institute M.Math. II Year First Semester Back Paper Exam 2006-07 Advanced Probability Date: -01-07

Time: 3 hrs

Max. Marks:90 Instructor: B Rajeev

(10)

(1) (a) Suppose X_1, X_2 are independent random variables, $EX_i = 0$ and $Var(X_i) < \infty$. For $\alpha > 0$ show that ,

$$P(\max(X_1, X_1 + X_2) \ge \alpha) \le \frac{1}{\alpha^2} \operatorname{Var}(X_1 + X_2)$$

(b) Let (X_n) be an independent sequence, with each X_i having exponential distribution with parameter $\alpha > 0$. Let $M_n := max(X_1, \cdots, X_n)$. Let $Y_n := M_n - \frac{\log n}{\alpha}$. Show that for all x in \mathbb{R}

$$\lim_{n \to \infty} P(Y_n \le x) = e^{-e^{-\alpha x}}$$
(8)

- (c) Let (X_n) be a sequence of random variables such that $X_n \Rightarrow a$ for some real number a. Suppose $h : \mathbb{R} \to \mathbb{R}$ is measurable and continuous at a. Show that $h(X_n) \Rightarrow h(a)$.
- (2) (a) Let μ be a probability measure on \mathbb{R} and ϕ its characteristic function. For u > 0, show that

$$\mu\{x: |ux| > 2\} < \frac{1}{u} \int_{-u}^{u} (1 - \phi(t)) dt$$
(5)

- (b) Let (μ_n) be a sequence of probability measures on \mathbb{R}^d and let (ϕ_n) be the corresponding sequence of characteristic functions. Suppose that $\phi_n(t) \to g(t)$ for all $t \in \mathbb{R}$, where g(t) is continuous at t = 0. Then there exists a probability measure μ on \mathbb{R} such that $\mu_n \Rightarrow \mu$ and g(t)is the characteristic function of μ . (Hint : show that the sequence (μ_n) is tight) (7)
- (c) Suppose μ and ν are two probability measures on \mathbb{R}^k and for all α , $\mu\{x: t \cdot x \leq \alpha\} = \nu\{x: t \cdot x \leq \alpha\}$ for all $t = (t_1, \cdots, t_k)$. Show that $\mu = \nu$.
- (3) Let T be a non empty set and let \mathbb{R}^T be the 'product space' $\mathbb{R}^T := \{x \mid x:$ $T \to \mathbb{R}$. Let \mathcal{R}^T be the sigma field generated by the coordinate random variables $\{\xi_t : t \in T\}$ and let \mathcal{R}_0^T be the class of finite dimensional cylinder sets i.e subsets A of the form

$$A = \{ x \in \mathbb{R}^T : (\xi_{t_1}(x), \cdots, \xi_{t_k}(x)) \in H \}$$

a) Show that \mathcal{R}_0^T is a field b) Show that \mathcal{R}^T is the smallest sigma field containing \mathcal{R}_0^T . (10)(5)

(4) Let f be a non negative, measurable and integrable function on \mathbb{R} . Let $F(x) := \int_{-\infty}^{x} f(t) dt$. Using the fact that a non decreasing function has a finite derivative outside a set of Lebesgue measure zero, show that F'(x) =f(x), almost everywhere with respect to Lebesgue measure. (10)

1

(5) Let (Ω, \mathcal{F}, P) be a probability space and \mathcal{G} be a sub sigma field of \mathcal{F} . (a) let $A_n \in \mathcal{F}$ be disjoint sets for $n = 1, \cdots$. Show that

$$P(\bigcup_{n} A_{n} | \mathcal{G}) = \sum_{n} P(A_{n} | \mathcal{G}) \ a.s$$

(b) If X and Y are random variables such that X is \mathcal{G} measurable, Y and XY are integrable then , show that

$$E[XY|\mathcal{G}] = XE[Y|\mathcal{G}] \ a.s$$

(10)

(7)

(c) Let $(X_n)_{n\geq 1}$ be an independent sequence of mean zero random variables. Let $\mathcal{F}_n := \sigma\{X_1, \cdots, X_n\}$ and let $S_n = X_1 + \cdots + X_n$. Show that $(S_n, \mathcal{F}_n)_{n\geq 1}$ is a martingale. (5).